Ch. 11 Thermodynamics

Return to TOC

Definitions


First Law of Thermodynamics

Example

A 26.00 g\pu{26.00g} sample of a 85.25 C\pu{85.25^\circ C} metal is added to an insulated cup with 75 g\pu{75g} of 24.00 C\pu{24.00^\circ C} water. The final temperature of the water and metal is 28.34 C\pu{28.34^\circ C}. What is the specific heat of the metal?


By conservation of energy, qwater=qmetalq_\text{water}=-q_\text{metal}. Thus from the formula,
mwatercwaterΔTwater=mmetalcmetalΔTmetalm_\text{water}c_\text{water}\Delta T_\text{water}=-m_\text{metal}c_\text{metal}\Delta T_\text{metal}
(75.00 g)(4.184 JgC)(28.34 C24.00 C)=(26.00 g)(cmetal)(28.34 C85.25 C)(\pu{75.00g})(\pu{4.184J//g^\circ C})(\pu{28.34^\circ C}-\pu{24.00^\circ C})=-(\pu{26.00g})(c_\text{metal})(\pu{28.34^\circ C}-\pu{85.25^\circ C})
cmetal=(75.00)(4.184)(4.34)(26.00)(56.91)JgC=0.9204 JgCc_\text{metal}=\frac{(75.00)(4.184)(4.34)}{(26.00)(56.91)}\pu{J//g^\circ C}=\pu{0.9204 J//g^\circ C}

Example

Find ΔH\Delta H^\circ for the reaction below, given the following reactions and subsequent ΔH\Delta H^\circ values:
HX2SOX4(l)SOX3(g)+HX2O(g)\ce{H2SO4(l) -> SO3(g) + H2O(g)}

HX2S(g)+2OX2(g)HX2SOX4(l)\ce{H2S(g) + 2O2(g) -> H2SO4(l)}
ΔH=235.5 kJ\Delta H=\pu{-235.5 kJ}
HX2S(g)+2OX2(g)SOX3(g)+HX2O(l)\ce{H2S(g) + 2O2(g) → SO3(g) + H2O(l)}
ΔH=207 kJ\Delta H=\pu{-207 kJ}
HX2O(l)HX2O(g)\ce{H2O(l) → H2O(g)}
ΔH=44 kJ\Delta H=\pu{44kJ}

Since HX2SOX4\ce{H2SO4} must be on the left, we start with the reverse of the first equation

HX2SOX4(l)HX2S(g)+2OX2(g)\ce{H2SO4(l) -> H2S(g) + 2O2(g)}
ΔH=235.5 kJ\Delta H=\pu{235.5 kJ}

Next, we must get rid of HX2S\ce{H2S} and 2OX2\ce{2O2}, so add the second equation

HX2SOX4(l)SOX3(g)+HX2O(l)\ce{H2SO4(l) -> SO3(g) + H2O(l)}
ΔH=28.5 kJ\Delta H=\pu{28.5 kJ}

Finally, we remove the HX2O(l)\ce{H2O(l)} and convert it to HX2O(g)\ce{H2O(g)}, so add the third equation

HX2SOX4(l)SOX3(g)+HX2O(g)\ce{H2SO4(l) -> SO3(g) + H2O(g)}
ΔH=72.5 kJ\Delta H=\pu{72.5 kJ}

So, the final ΔH\Delta H^\circ is 72.5 kJ\pu{72.5 kJ}

Example

Calculate the heat of combustion of CHX4\ce{CH4} given the following heats of formation:
ΔHf(CHX4(g))=74.8 kJ/mol\Delta H_f^\circ(\ce{CH4(g)})=\pu{-74.8 kJ/mol}
ΔHf(COX2(g))=110.5 kJ/mol\Delta H_f^\circ(\ce{CO2(g)})=\pu{-110.5 kJ/mol}
ΔHf(HX2O(g))=241.8 kJ/mol\Delta H_f^\circ(\ce{H2O(g)})=\pu{-241.8 kJ/mol}


The combustion of CHX4\ce{CH4} is given by the equation
CHX4+2OX2COX2+2HX2O\ce{CH4 + 2O2 -> CO2 + 2H2O}
Since ΔHf(OX2)=0\Delta H_f^\circ(\ce{O2})=0,
ΔHreact=[(2 mol)(241.8 kJmol)+(1 mol)(110.5 kJmol)][(1 mol)(74.8 kJmol)]=519.3 kJ\Delta H_\text{react}^\circ=[(\pu{2 mol})(\pu{-241.8 kJ//mol})+(\pu{1 mol})(\pu{-110.5 kJ//mol})]-[(\pu{1 mol})(\pu{-74.8 kJ//mol})]=\pu{-519.3 kJ}


Second Law of Thermodynamics


Gibbs Free-Energy